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1. Introduction

D-branes in models with N = (2, 2) world-sheet supersymmetry have been studied in

various approaches and at different points in moduli space, and it has been fruitful to

combine several viewpoints (see e.g. [1 – 7]). In this paper we will study an example of the

relationship between D-branes in Gepner models (for some early work see [8]), those of the

corresponding geometric compactification (see e.g. [9, 10]), and matrix factorisations of the

equivalent Landau-Ginzburg theory that were first studied in [11 – 13].

There are two classes of branes that preserve half of the N = 2 supersymmetry [14];

these are called A-type and B-type, and are related by mirror symmetry. In the following

we are going to consider the B-type branes of a Gepner model involving two minimal models

at k = 2, giving a total central charge of c = 3. These branes have an interpretation in

terms of A-type branes in the corresponding mirror, which is a torus theory [15].

We shall construct an explicit map between certain branes in the Gepner model (tensor

product and permutation branes [16, 17]) and those of the torus, matching the minimal
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model labels of the former with angles, positions, and Wilson lines of the latter. This will

be done by writing the boundary states in either theory in terms of the Ishibashi states

of the diagonal N = 2 theory at c = 3. The Gepner model, on the other hand, can be

described topologically by an orbifold of the Landau-Ginzburg theory with superpotential

W = x4
1 +x4

2+z2 (see e.g. [15, 18]), where the branes are described by matrix factorisations

of the superpotential. In a second step, we shall identify the Gepner branes with matrix

factorisations of the Landau-Ginzburg theory [19, 20].

A similar analysis has already been performed in [21]. There the dictionary between

the tensor product Gepner branes and the torus branes was studied by comparing the self-

overlap of the boundary states. This leads to an identification of the angle of the Gepner

branes in the torus description. Here we shall be more explicit; in particular we shall also

determine the relative positions and Wilson lines of the Gepner branes, and we shall also

discuss permutation branes.

The relation between the tensor product branes of the Gepner model and the branes

of the LG theory with superpotential W = x4
1 + x4

2 + z2 was also studied in [22]. Finally,

the branes of the LG theory with superpotential W = x4
1 + x4

2, which is mirror to the

Z4 orbifold of the torus, were related in [23] by matching intersection matrices and the

coupling to RR-primary fields.

The organisation of the paper is as follows: In section 2, we set up our notation for

the torus theory and its A-type D-branes; we also consider two Z4 symmetries whose

action on the branes has a geometric interpretation. In section 3 the same is done for

the corresponding Gepner model and its B-type tensor product and permutation branes.

In particular we give the explicit formulae and propose two Z4 symmetries, one being

the quantum symmetry of the orbifold, that correspond to those of the torus. Section 4

explains the matching of the branes on both sides, and in section 5 we relate the Gepner

branes to matrix factorisations of the corresponding superpotential. Section 6 contains

some conclusions.

2. The torus T
2

Let us begin by setting up our conventions for the conformal field theory on the torus T 2.

The torus shall be rectangular, and have both radii at the self-dual value. This theory is

the mirror of the Gepner model considered in section 3.

2.1 Space of states

The torus is given by two free bosonic fields X1(z, z̄), X2(z, z̄), and two fermionic fields

ψ1(z)+ ψ̃1(z̄), ψ2(z)+ ψ̃2(z̄), where we have explicitly written out the chiral and antichiral

parts. The bosonic fields are each compactified on a circle of self-dual radius R = 1 (for

α′ = 1):

Xi(z, z̄) ∼ Xi(z, z̄) + 2π (i = 1, 2) .

We can complexify these fields as

X± :=
1√
2
(X1 ± iX2) , ψ± :=

1√
2
(ψ1 ± iψ2) , ψ̃± :=

1√
2
(ψ̃1 ± iψ̃2) .

– 2 –
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For the bosonic fields, the derivatives with respect to z (z̄) are chiral (antichiral) fields with

mode expansion

∂zX
± = −i

∑

n∈Z

α±
n z−n−1 , ∂z̄X

± = −i
∑

n∈Z

α̃±
n z̄−n−1 ; (2.1)

the chiral fermionic fields have the expansion

ψ± =
∑

r

ψ±
r z−r− 1

2 , ψ̃± =
∑

r

ψ̃±
r z̄−r− 1

2 , (2.2)

where r ∈ Z in the Ramond sector and r ∈ Z + 1
2 in the Neveu-Schwarz sector. Due

to the compactification, the ground states in the space of states have momenta given by

momentum and winding quantum numbers pi and wi,

PL
i =

1√
2
(pi + wi), PR

i =
1√
2
(pi − wi) (i = 1, 2) . (2.3)

The superscripts L and R of the center of mass momenta P refer to left- and right-moving

fields.

We will be interested in the N = 2 supersymmetry of this theory. The Verma module

with respect to the N = 2 generators on each of the ground states (2.3), except for the

vacuum state pi = wi = 0, forms an irreducible N = 2 highest weight representation at

c = 3. In the NS sector, the corresponding highest weight state has conformal dimension

H (H̃) and U(1) charge Q (Q̃) for the left-(right-)movers, with

H =
1

4
((p1 + w1)

2 + (p2 + w2)
2) , Q = 0 , (2.4)

H̃ =
1

4
((p1 − w1)

2 + (p2 − w2)
2) , Q̃ = 0 . (2.5)

Highest weights and charges of the R sector states are reached by spectral flow, which gives

rise to a representation at highest weight H+ 1
8 for every NS representation at highest weight

H > 0. We will use the convention that we label a Ramond representation by conformal

dimension and charge of the highest weight vector which is annihilated by the mode G+
0 .

Ground states with momenta as in (2.3) will be denoted

|p1, w1, p2, w2〉NS,R (2.6)

for momentum quantum numbers pi and winding numbers wi. We will drop the R or NS

index when unnecessary.

The Verma modules built on the vacuum states pi = wi = 0 are reducible in both the

NS and the R sector, as in the uncompactified case [24]. In the NS sector, highest weights

and charges of these representations are given by

H = 0 , Q = 0 ;H =
2|n| − 1

2
, Q = sign(n) for n ∈ Z \ {0} . (2.7)

The R sector representations follow again with the help of the spectral flow.
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These representations are generated in the NS sector from the singular vectors of the

N = 2 vacuum Verma module

(α+
−1)

n−1ψ+
− 1

2

|0, 0, 0, 0〉NS ,

(α−
−1)

n−1ψ−
− 1

2

|0, 0, 0, 0〉NS ,
(2.8)

for n ∈ N; we will use the short-hand notation

|n〉NS =











|2|n|−1
2 , 1〉NS for n > 0 ,

|0, 0〉NS for n = 0 ,

|2|n|−1
2 , −1〉NS for n < 0 ,

(2.9)

where the right-hand side gives the conformal dimension and charge of the corresponding

highest weight vector. Here, the states with n > 0 denote the states of the first line in (2.8),

and those with n < 0 the states of the second line in (2.8).

In the R sector, the singular vectors are

(α+
−1)

n−1ψ+
−1|0, 0, 0, 0〉R , (α+

−1)
n|0, 0, 0, 0〉R ;

(α−
−1)

n−1ψ−
−1ψ

−
0 |0, 0, 0, 0〉R , (α−

−1)
nψ−

0 |0, 0, 0, 0〉R ,
(2.10)

where |0, 0, 0, 0〉R is the free field ground state |18 , 1
2〉R. We will use a short-hand notation

analogous to the NS case, namely

|n,+〉R =

{

|18 , 1
2〉R (n = 0)

|n + 1
8 , 3

2 〉R (n ∈ N)
,

|n,−〉R =

{

|18 , −1
2〉R (n = 0)

|n + 1
8 , −3

2〉R (n ∈ N)
.

(2.11)

2.2 Two Z4 symmetries on T 2

We note two Z4 symmetries that we will identify in section 4 with symmetries of the

corresponding Gepner model.

The rotation group Z4 acts naturally on the bosonic torus fields when the action of its

generator g on the fields is given by

g(X1) = −X2 , g(X2) = X1 ,

g(ψ1) = −ψ2 , g(ψ2) = ψ1 ,

which in terms of the complexified fields reads

g(X±) = e±i π
2 X± , g(ψ±) = e±i π

2 ψ± .

A little care is required when we define the phase of the action of g on the ground states

with non-vanishing momentum (2.6). In the NS sector, we can define

g|p1, w1, p2, w2〉NS = | − p2, −w2, p1, w1〉NS . (2.12)
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In the R sector, where the ground states form a tensor product of two two-dimensional

representations of the Dirac algebra, we must include an appropriate phase.

The highest weight states in the vacuum sectors obtain a phase under the Z4 action

according to (2.8), (2.10):

g|n〉NS = eiπn|n〉NS (n ∈ Z) ,

g|n, ±〉R = e±iπ(n+ 1
2
)|n, ±〉R (n ∈ N0) .

(2.13)

A linear combination of ground states which is an eigenstate of eigenvalue ei π
2
t for 0 ≤ t ≤ 3

with respect to this Z4 symmetry will be denoted with a superscript t:

|p1, w1, p2, w2〉t =
1

2

3
∑

n=0

e−i π
2
tngn|p1, w1, p2, w2〉 . (2.14)

The other symmetry is a Z4 symmetry involving T-duality, which we will call Z
′
4 in

order to distinguish it from the previous one. Denoting its generator g′, it acts on the

ground states (2.6) as

g′|p1, w1, p2, w2〉NS = (−1)p1+p2|w1, p1, w2, p2〉NS . (2.15)

In the vacuum sectors, this symmetry has the same effect as (2.13).

An eigenstate with respect to both symmetries is denoted

|p1, w1, p2, w2〉t,m =
1

4

3
∑

n=0

3
∑

s=0

e−i π
2
(st+mn)gs(g′)n|p1, w1, p2, w2〉 . (2.16)

The superscript on the left-hand side indicates the eigenvalues ei π
2
t under g and ei π

2
m

under g′.

The first Z4 action can be interpreted geometrically as a rotation by 90 degrees. The

action of Z
′
4 amounts to a T-duality transformation in both directions, and the phase can

be seen as a shift Xi(z, z̄) 7→ Xi(z, z̄) + π in both directions, i.e. as Xi
L,R 7→ Xi

L,R + π
2 .

2.3 The N = 2 boundary states on T 2

We are interested in boundary states on the torus that satisfy the N = 2 boundary condi-

tions of type A,

(Ln − L̃−n) ‖A〉〉 = 0 ,

(Jn − J̃−n) ‖A〉〉 = 0 , (2.17)

(G±
r + iηG̃∓

−r) ‖A〉〉 = 0 ,

with spin structure η ∈ {±1}. The zero mode condition is H = H̃ and Q = Q̃, which

means

p1w1 = −p2w2 (2.18)
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in terms of the ground state quantum numbers. For non-vanishing momenta, there is —

up to a phase — a unique Ishibashi state in these representations, which we will denote

by [25, 26]

|p1, w1, p2, w2; η〉〉NS, R . (2.19)

The subscript is to be understood as specifying either the NS-NS or the R-R sector. We can

fix the relative normalisations between Ishibashi states at given highest weight by demand-

ing that these states transform under the Z4 symmetries in the same way (2.12), (2.15) as

the NS ground states, i.e. by setting

g|p1, w1, p2, w2〉〉NS, R = | − p2, −w2, p1, w1〉〉NS, R ,

g′|p1, w1, p2, w2〉〉NS, R = (−1)p1+p2|w1, p1, w2, p2〉〉NS, R .
(2.20)

In the vacuum sector, the representations containing the same singular vectors in the

left- and the right-moving part of the theory are isomorphic, so that we have an Ishibashi

state for every left-moving irreducible highest weight representation. We will denote the

Ishibashi states in the vacuum sectors analogously to the left-moving ground states by

|n; η〉〉NS, |n, ±; η〉〉R, (2.21)

where n ∈ Z in the NS-NS and n ∈ N0 in the R-R sector.

It was shown in [24] that the N = 2 boundary states on the torus can all be expressed

in terms of the usual Neumann branes with electric fields. The Neumann gluing conditions

with flux φ,

(α±
n + e∓iφ α̃∓

−n) ‖A〉〉= 0 ,

(ψ±
r + iηe∓iφ ψ̃∓

−r) ‖A〉〉= 0 ,
(2.22)

imply the N = 2 gluing conditions (2.17) for every (real) value of φ. On the other hand,

every fundamental N = 2 boundary state on the torus is actually a state satisfying (2.22)

for a specific flux φ. In fact, for non-vanishing ground-state momentum, any N = 2

Ishibashi state |p1, w1, p2, w2; η〉〉 actually defines a U(1) Ishibashi state satisfying (2.22),

with φ given by

tan

(

φ

2

)

=
p1

p2
. (2.23)

This expression allows us to interpret the quantity φ as an angle in the space of momentum

quantum numbers. In the NS sector, a convenient notation is to label the U(1) states by

two coprime momentum quantum numbers p̂1 ∈ Z, p̂2 ∈ N0, and two integers a, b,

|a, b, φ; η〉〉NS := |ap̂1, bp̂2, ap̂2, −bp̂1; η〉〉NS , (2.24)

where the right-hand side is in the notation (2.19), and φ satisfies (2.23), i.e. tan(φ/2) =

p̂1/p̂2.

In the R sector, we have to be more careful. It turns out that we can avoid the action

of g to look quite tedious in both sectors by extending the angle φ to take values in the

interval (−2π, 2π], i.e. to enlarge its period to 4π. We will hence associate to every Ishibashi

– 6 –
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state in the representation labelled by p1 = ap̂1, w1 = bp̂2, p2 = ap̂2, w2 = −bp̂1 the two

notations

|a, b, φ〉〉R = −| − a, −b, φ + 2π〉〉R , (2.25)

and do the same in the NS sector, but without the relative minus sign. Arranging the

signs, the action of g and g′ on the Ishibashi states in the new notation can be written as

g|a, b, φ〉〉 = |a, b, φ + π〉〉 ,

g′|a, b, φ〉〉 = | − b, a, φ + π〉〉

in both the R and the NS sector.

In the vacuum sectors, the N = 2 Ishibashi states transform analogously to their

respective ground states, i.e.

g|n; η〉〉NS = eiπn|n; η〉〉NS (n ∈ Z)

g|n, ±; η〉〉R = e±iπ(n+ 1
2
)|n, ±; η〉〉R (n ∈ N0) .

(2.26)

We will now fix the remaining phases in the definition of our Ishibashi states. In the

vacuum sectors, this is done by setting

‖Neumann; η〉〉NS = N
∑

n∈Z

|n; η〉〉NS and

‖Neumann; η〉〉R = N
∑

n∈N0

(

|n, +; η〉〉R + |n, −; η〉〉R
)

,

where ‖Neumann; η〉〉NS, R is the free field Neumann vacuum boundary state. The phases

of the other Ishibashi states are determined by writing the boundary states in the following

form [26]:

‖A, B, φ, ǫ; η〉〉 = N (φ)

{

∑

n∈Z

einφ |n; η〉〉NS +
∑

(a,b)∈Z2\{(0,0)}
eiAa+iBb|a, b, φ; η〉〉NS

+iǫ

[

∑

n∈N0

(

ei(n+ 1
2
)φ |n, +; η〉〉R + e−i(n+ 1

2
)φ |n, −; η〉〉R

)

+
∑

(a,b)∈Z2\{(0,0)}
eiAa+iBb|a, b, φ; η〉〉R

]}

.

(2.27)

In this notation, A is the relative position of the brane, B its Wilson line, and ǫ ∈ {±1}
distinguishes a brane from its respective anti-brane. The equivalences in this notation are

‖A + 2π, B, φ, ǫ; η〉〉 = ‖A, B + 2π, φ, ǫ; η〉〉 = ‖A, B, φ, ǫ; η〉〉 ,

‖A, B, φ + 2π, ǫ; η〉〉 = ‖A, B, φ, −ǫ; η〉〉 .

The Z4 symmetries from above act as

g‖A, B, φ, ǫ; η〉〉 = ‖A, B, φ + π, ǫ; η〉〉 ,

g′‖A, B, φ, ǫ; η〉〉 = ‖ − B, A, φ + π, ǫ; η〉〉 .
(2.28)

After these preperations, we now turn to the Gepner description of the mirror the-

ory [15, 27].

– 7 –
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3. T
2 as a Gepner model

The Gepner construction consists of a free conformal field theory describing an uncom-

pactified D-dimensional space-time, with an interior conformal field theory built by means

of a tensor product of N = 2 minimal models [28]. An orbifold ensures that the complete

theory is a consistent superstring theory with space-time supersymmetry and a modular

invariant partition function [29].

In the following we shall only consider the internal part of the theory, namely a tensor

product of two minimal models at level k = 2, which together give a central charge c = 3.

In order to relate this theory to the torus, we need to perform an orbifold that can be

understood in terms of a simple current extension [30 – 32].

For the tensor product of two minimal models at level k = 2, there are two primary

fields that generate the simple current subgroup. In the coset notation, these fields are1

u = (Φ0,0
2 , Φ0,2

2 ) , w = (Φ0,2
0 , Φ0,2

0 ) , (3.1)

again for general even k. Projection onto zero monodromy charge with respect to the

current u amounts to keeping only fields with

m1 + m2 =
k + 2

2
s1 mod k + 2 , (3.2)

and the charge projection with respect to the simple current w provides the exclusion of

NS-R coupling. The simple current extension therefore leaves us with the space of states
⊕

[l1,m1,s1],
[l2,m2,s2],
t∈Zk+2,

s̃i=si mod 2

(l1,m1, s1) ⊗ (l2,m2, s2) ⊗ (l1,m1 − 2t, s̃1) ⊗ (l2,m2 − 2t, s̃2) , (3.3)

where the sum runs over equivalence classes (denoted by the square brackets) of minimal

model representations with coset labels (l,m, s), subject to fermion alignment s1 − s2 = 0

mod 2 to prohibit the NS-R coupling, and to charge projection (3.2) for zero monodromy

charge. The first two factors in (3.3) refer to left-moving and the second two to right-moving

representations.

For k = 2, the diagonal algebra of a tensor product of two minimal models is an N = 2

algebra at c = 3, and (3.3) decomposes into a direct sum of representations of the diagonal

algebra. The diagonal representations corresponding to highest weight vectors of lowest

conformal dimension with respect to the construction (3.3) at k = 2 can be read off from

the low-level expansion of the characters. One finds
(

1

4
,

1

2

)

⊗
(

1

4
,

1

2

)

=

(

1

2
, 1

)

⊕ (1, 0) ⊕ (2, 0) ⊕ . . . ,

(

1

2
, 0

)

⊗ (0, 0) =

(

1

2
, 0

)

⊕
(

5

2
, 0

)

⊕
(

5

2
, 0

)

⊕ . . . , (3.4)

(

1

8
,

1

4

)

⊗
(

1

8
. − 1

4

)

=

(

1

4
, 0

)

⊕
(

5

4
, 0

)

⊕
(

9

4
, 0

)

⊕
(

13

4
, 0

)

⊕ . . . ,

1see the appendix for our conventions on the coset labels.
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where the left-hand side gives the highest weights and charges of the minimal model rep-

resentations, and the right-hand side those of the representations of the diagonal algebra.

The other tensor products of minimal model representations that appear in the theory are

linked to those in (3.4) by spectral flow, where the same flow parameter is applied on both

factors on the left hand side, as well as on the representations appearing in the sum on the

right-hand side. From the expansion one can also guess a general formula for the decom-

position (3.4) (compare with the case considered in [33]); this is described in the appendix.

However (3.4) already contains all the information we are going to need in the following.

In the tensor product of minimal models at k = 2, the primary fields with l = k
2 = 1

are fixed points under the action of u2. Since u generates a cyclic Z4 subgroup of the simple

current group, the stabiliser of these fields is isomorphic to Z2. Due to this fixed point we

can not directly apply the formulae for the tensor product branes from [19], but will have

to resolve the S-matrix [31, 32]. The formulae for the branes will be given in the following

subsections (where we will construct the tensor product states in a similar way as in [34]).

Before we come to them, let us point out the two Zk+2 symmetries in the theory (3.3)

that we will use later on to fix the map between Ishibashi states of the Gepner model and

Ishibashi states on the torus. The first is the quantum symmetry, i.e. the symmetry that is

used to undo the orbifold we have just achieved by the simple current extension. It divides

the space of states into the twist sectors t = 0, . . . , k + 1 by acting as a phase e
2πi
k+2

t on the

states within the respective sector. The second symmetry acts as a phase e
2πi
k+2

m1 on a state

with left-moving labels (l1, m1, s1)⊗ (l2, m2, s2). By considering states in representations

of low-lying ground-state momenta, one can see that these two symmetries are in fact just

the symmetries Z4 and Z
′
4 from section 2.2.

Incidentally, the requirement that the quantum Z4 symmetry acts geometrically on

the torus side requires that we make use of mirror symmetry and relate the B type branes

of the Gepner model to A type branes on the torus.

3.1 Boundary states on the Gepner model

Supersymmetric B-type boundary states in the theory (3.3) satisfy the gluing conditions

(

L(1)
n + L(2)

n − L̃
(1)
−n − L̃

(2)
−n

)

‖B〉〉 = 0 ,
(

J (1)
n + J (2)

n + J̃
(1)
−n + J̃

(2)
−n

)

‖B〉〉 = 0 , (3.5)
(

G± (1)
r + G± (2)

r + iη(G̃
± (1)
−r + G̃

± (2)
−r )

)

‖B〉〉 = 0 .

Among these states we will focus on the tensor product and the permutation branes [19],

and give a map between them and certain boundary states on the torus.

3.1.1 Tensor product boundary states

Tensor product branes satisfy (3.5) separately for the two tensor product factors (1) and

(2). In the sector of the form

(li,mi, si) ⊗ (li,mi − 2t, s̃i) (i = 1, 2) (3.6)
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we find a B-type Ishibashi state if there exists an automorphism between the left- and the

right-moving representation which takes the coset labels (l, m, s) to

l̃ = l , m̃ = −m , s̃ = −s (3.7)

up to field identification. In other words, we can construct a B-type Ishibashi state when a

left-moving representation (l, m, s) is tensored to a right-moving representation (l̃, m̃, s̃)

in (3.6), which amounts to demanding that

mi = t mod k + 2 , si = −s̃i . (3.8)

There is a subtlety when li = k
2 , where the labels of the right-moving representation in (3.6)

may encode the conjugate representation, but (3.7) is only met after a field identification.

Note that our convention to use the same l labels in the left- and the right-moving rep-

resentation prevents us from overlooking this possibility in the other cases. There exist

therefore additional Ishibashi states for

li = l̃i =
k

2
, mi = t +

k + 2

2
mod k + 2 , si = −s̃i − 2 . (3.9)

Combination of the ‘direct’ case (3.8) and the ‘flipped’ case (3.9) for the two factors i = 1, 2

yields the four possibilities

1. direct-direct (all values of l1, l2, no field identification necessary),

2. direct-flipped (l2 = k
2 with field identification, all l1),

3. flipped-direct (l1 = k
2 with field identification, all l2),

4. flipped-flipped (l1 = l2 = k
2 ).

Since the automorphism condition is to be matched for both factors i = 1, 2, the charge

projection (3.2) gives a further restriction on the twist sectors. In the four cases, the charge

projection is

1. 2t = k+2
2 s1 mod k+2. From this, we obtain states in the Neveu-Schwarz sector (si = 0

mod 2) if t = 0 mod k+2
2 ; these direct states have mi = t, and therefore the li will take

the values li = t mod 2. On the other hand, we obtain states in the Ramond sector

(si = 1 mod 2) if t = k+2
4 mod k+2

2 ; their l labels take the values li = t + 1 mod 2.

2. 2t = k+2
2 (s1 + 1) mod k + 2. Here the first factor gives an Ishibashi state by flipping

the right-moving representation, and l1 = k
2 . The m labels are m1 = t + k+2

2 , and

m2 = t, since the second factor is unflipped. We will get Ramond states for t = 0

mod k+2
2 , and the alignment of the coset labels of the first factor tells us that t has

to be even. The label l2 is odd. Furthermore, we will get NS states for t = k+2
4 mod

k+2
2 odd, where again l2 only takes odd values.

3. the same as in case 2, and we obtain the same result as there with interchanged

indices (1 ↔ 2).

4. 2t = k+2
2 s1 mod k +2, which is the same as in case 1, but this time both factors have

flipped right-moving labels. Therefore, li = k
2 , and mi = t + k+2

2 (i = 1, 2). This
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gives additional Ishibashi states in the Ramond sector for t = k+2
4 mod k+2

2 even,

and contributes an additional state in the Neveu-Schwarz sector if t = k+2
2 is odd.

The labels of representations in which Ishibashi states appear are listed in table 1 for the

different values of k. With the k = 2 model in mind, we will now focus on the case where
k+2
4 is odd, i.e. k = 2 mod 8. According to table 1, the Ishibashi states in the twist sector

labelled by t = ν k+2
4 form three groups, one where the l labels are both even and the charge

labels mi = ν k+2
4 = t show that we are dealing with an ‘unflipped’ case in both factors,

and two groups where one of the l labels takes the value k
2 and the corresponding charge

label is shifted to m = k+2
4 (ν + 2), thus indicating a ‘flipped’ case, while the other factor

has l odd and is unflipped. Note that there are no states where it was necessary for both

factors to switch the field labels.

The standard tensor product branes at k = 2 mod 8 are given by

‖L1, M1, S1; L2, M2, S2〉〉 = (k + 2)
∑

ν∈Z4,
s1,s2

∑

l1,l2
even

S
L1,M1,S1;l1,ν k+2

4
,s1

S
L2,M2,S2;l2,ν k+2

4
,s2

√

S0,0,0;l1,ν k+2
4

,s1
S0,0,0;l2,ν k+2

4
,s2

×|l1, ν
k + 2

4
, s1; l2, ν

k + 2

4
, s2〉〉 , (3.10)

where the si obey li + mi + si even for i = 1, 2. Note that these branes only couple to

Ishibashi states in representations with even l labels; no flipped states are involved so far.

The formula (3.10) only makes sense for Li + Mi + Si even. We will be interested in an

alignment η1 = η2 = η, and hence restrict ourselves to S1 − S2 even.

There are the following identifications for the brane labels: First, we have the analogue

of the field identification, (Li, Mi, Si) = (k−Li, Mi+k+2, Si+2) for either i = 1 or i = 2.

Second, we have the identification Li = k−Li, again for either i = 1 or i = 2. Furthermore,

we notice that all branes with the same value of M1 + M2 mod 8 are identical, and since

s1−s2 is even, we also have (S1, S2) = (S1+2, S2+2). Last, a shifting S1+S2 7→ S1+S2+2

is equivalent to shifting M1 + M2 7→ M1 + M2 + 4.

Given these identifications, we conclude that there are 2k2 inequivalent branes of

type (3.10), k2 for Si odd and k2 for Si even. In our case, where k = 2, we will hence have

8 of these branes, or 4 if we restrict to both S1 and S2 even.

The overlap of two of these branes,

〈〈L̂1, M̂1, Ŝ1; L̂2, M̂2, Ŝ2‖q
1
2
(L0+L̃0)−

c
12 ‖L1, M1, S1; L2, M2, S2〉〉 ,

can be expressed in the open string sector by means of the modular S transformation. The

tensor product of representations [l′1,m
′
1, s

′
1]⊗ [l′2,m

′
2, s

′
2] appears in the open string sector

with multiplicity
(

N L̂1

L1,l′1
+ N L̂1

k−L1,l′1

)(

N L̂2

L2,l′2
+ N L̂2

k−L2,l′2

)

δ(2)(S1 − Ŝ1 + s′1)

×δ(2)(S2 − Ŝ2 + s′2) δ(4)

(

1

2
(M1 − M̂1 + m′

1 + M2 − M̂2 + m′
2) (3.11)

−(S1 − Ŝ1 + s′1 + S2 − Ŝ2 + s′2)

)

.
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I. k+2
2 odd

t m1 mod k + 2 s1 l1 m2 mod k + 2 s2 l2

0 0 even even 0 even even

0 odd odd k+2
2 odd k

2
k+2
2 odd k

2 0 odd odd
k+2
2

k+2
2 even odd k+2

2 even odd

0 even k
2 0 even k

2

II. k+2
4 odd

t m1 mod k + 2 s1 l1 m2 mod k + 2 s2 l2

0 0 even even 0 even even

0 odd odd k+2
2 odd k

2
k+2
2 odd k

2 0 odd odd
k+2
4

k+2
4 odd even k+2

4 odd even
k+2
4 even odd 3k+2

4 even k
2

3k+2
4 even k

2
k+2
4 even odd

k+2
2

k+2
2 even even k+2

2 even even

0 odd k
2

k+2
2 odd odd

k+2
2 odd odd 0 odd k

2

3k+2
4 3k+2

4 odd even 3k+2
4 odd even

k+2
4 even k

2 3k+2
4 even odd

3k+2
4 even odd k+2

4 even k
2

III. k+2
4 even

t m1 mod k + 2 s1 l1 m2 mod k + 2 s2 l2

0 0 even even 0 even even

0 odd odd k
2 odd k

2
k+2
2 odd k

2 0 odd odd
k+2
4

k+2
4 odd odd k+2

4 odd odd

3k+2
4 odd k

2 3k+2
4 odd k

2
k+2
2

k+2
2 even even k+2

2 even even

0 odd k
2

k+2
2 odd odd

k+2
2 odd odd 0 odd k

2

3k+2
4 3k+2

4 odd odd 3k+2
4 odd odd

k+2
4 odd k

2
k+2
4 odd k

2

Table 1: The possible Ishibashi states for different parities of k.

We can see from this formula that the open string vacuum appears with multiplicity 2 if

either L1 or L2 is equal to k
2 , and with multiplicity 4 if both L1 = L2 = k

2 . The branes of

the first kind, where the open string vacuum is contained twice, must be resolved, which
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yields for L1 = k
2 , L2 6= k

2

‖k

2
, M1, S1; L2, M2, S2〉〉 =

1

2
‖k

2
, M1, S1; L2, M2, S2〉〉unresolved

+
k + 2√

8

∑

ν∈Z4,
s1,s2

∑

l odd

ei π
4
M1(ν+2)−i π

2
S1s1

S
L2,M2,S2;l,ν

k+2
4

,s2
√

S0,0,0;l,ν k+2
4

,s2

(3.12)

×|k
2
,
k + 2

4
(ν + 2), s1; l, ν

k + 2

4
, s2〉〉 ,

where ‖k
2 , M1, S1; L2, M2, S2〉〉unresolved stands for a boundary state of the form (3.10).

Note that we can drop the usual factor ±1 in front of the additional part, since this

would only give us another identification in the set of the boundary state labels, namely

(L2,±1) ≡ (k − L2,∓1). The same values of M1 + M2 do not necessarily encode the

same brane any longer; however, shifting L2 7→ k − L2 is compensated by M1 7→ M1 + 2.

Altogether, we find 8k different states with S1 − S2 even of this type; 4k branes with both

Si even, and 4k branes with Si odd. For k = 2, we then have 8 branes with Si even.

For L1 6= k
2 , L2 = k

2 , we have the analogous formula

‖L1, M1, S1;
k

2
, M2, S2〉〉 =

1

2
‖L1, M1, S1;

k

2
, M2, S2〉〉unresolved

+
k + 2√

8

∑

ν∈Z4,
s1,s2

∑

l odd

S
L1,M1,S1;l,ν k+2

4
,s1

√

S0,0,0;l,ν k+2
4

,s1

ei π
4
M2(ν+2)−i π

2
S2s2 (3.13)

×|l, k + 2

4
ν, s1;

k

2
,
k + 2

4
(ν + 2), s2〉〉 ,

for again 8k different states. The branes (3.12), (3.13) thus get resolved by means of the

flipped Ishibashi states; branes with L1 = k
2 , L2 6= k

2 couple to representations where we

need the field identification in the first factor, and branes with L1 6= k
2 , L2 = k

2 couple to

representations that are flipped in the second factor. Since there are no states in which we

had to use the field identification in both factors, it seems reasonable that the branes at

L1 = L2 = k
2 do not couple to any flipped Ishibashi state. This is indeed the case, and we

find the formula

‖k

2
,M1, S1;

k

2
,M2, S2〉〉 =

1

2
‖k

2
,M1, S1;

k

2
,M2, S2〉〉unresolved (3.14)

for these branes. There are 8 different branes of this kind, 4 branes with Si even and 4

with Si odd.

3.1.2 Permutation boundary states

Permutation boundary states of type B satisfy the gluing conditions

(L(1)
n − L̃

(2)
−n)‖B〉〉 = (L(2)

n − L̃
(1)
−n)‖B〉〉 = 0 ,

(J (1)
n + J̃

(2)
−n)‖B〉〉 = (J (2)

n + J̃
(1)
−n)‖B〉〉 = 0 ,

(G± (1)
r + iηG̃

± (2)
−r )‖B〉〉 = (G± (2)

r + iηG̃
± (1)
−r )‖B〉〉 = 0 .
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Whenever we have to distinguish explicitly between tensor product and permutation bound-

ary states we will denote the latter with an additional superscript σ, ‖B〉〉σ. The permu-

tation boundary states have been worked out in [16, 17, 19]:

‖L, M, M̂ , S1, S2〉〉 =
1

k + 2

∑

ν∈Z4

∑

l, m

∑

s1, s2

SLl

S0l
ei π

4
M̂ν+i π

k+2
Mm−i π

2
(S1s1+S2s2)

×|l, m + n, s1; l, −m + n, s2〉〉 ,

(3.15)

where the sums over l and m run over appropriate values in the twist sector n = ν k+2
4 , and

si = l + m + n mod 2. In this formula, we have the label constraints L + M + S1 + S2 = 0

mod 2 and M − M̂ = 0 mod 2, and we restrict ourselves again to states with S1 − S2 = 0

mod 2.

For L 6= k
2 , there is again an analogue of the field identification, (L, M, M̂, S1 +S2) =

(k − L, M + k + 2, M̂ + 4, S1 + S2 + 2). From the charge projection (3.2) we see that

(M̂ , S1 +S2) = (M̂ +4, S1 +S2 +2), which we can combine with the field identification to

yield (L, M) = (k −L, M + k + 2). Furthermore, states with (S1, S2) and (S1 + 2, S2 + 2)

are again the same. We conclude that there are 4k(k + 2) different permutation branes

with L 6= k
2 and S1 − S2 even. If k = 2 there are thus 16 different branes with L 6= 1 and

even Si.

For L = k
2 , (L, M) = (k−L, M +k+2) is an identification on its own, without making

use of (M̂, S1 +S2) 7→ (M̂ +4, S1 +S2 +2). There are hence 4(k+2) different permutation

branes with L = k
2 and S1 −S2 even; for k = 2 this leaves us with 8 different L = 1 branes

at even Si.

Altogether, there are 4k2 + 12k + 8 different permutation branes with S1 −S2 even for

k = 2 mod 8, compared to a total of 2k2 + 16k + 8 tensor product branes.

4. Comparison of torus and Gepner model

We will now focus on the case where k = 2, and compare the boundary states we have just

described with those of the torus from section 2.3.

In order to compare the two respective classes of Ishibashi states we will write the

Gepner model Ishibashi states in terms of Ishibashi states of the diagonal N = 2 algebra.

An Ishibashi state in the left-moving representation

(h1, q1) ⊗ (h2, q2) =
⊕

[(H, Q)]

(H, Q) , (4.1)

where the direct sum runs over the diagonal representations of highest weight H and charge

Q (see (3.4)), consists of a sum of ‘diagonal’ Ishibashi states up to the choice of phases

ψ(H,Q),

|h1, q1, h2, q2〉〉 =
∑

[(H,Q)]

eiψ(H,Q) |H, Q〉〉(h1,q1)⊗(h2,q2) . (4.2)

In general we can not always set these phases to zero, since there exist tensor products

of minimal model representations that admit both a tensor product and a permutation
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Ishibashi state, and for those the phases eiψ(H,Q) have to be different. This is the case

whenever h1 = h2 and q1 = q2 in (4.1). Let us define the diagonal Ishibashi states in (4.2)

for h1 = h2 and q1 = q2 such that all phases ψ(H,Q) vanish for the permutation Ishibashi

state. Then, as explained in [19], the phase ψ(2h1,2q1) of the ground state in the tensor

product Ishibashi state is

ψ(2h1,2q1) =
π

2
s − π

k + 2
m , (4.3)

where (l, m, s) are the coset labels of the representation (h1, q1).

4.1 Brane dictionary from the Z4 symmetries

The identification of the Ishibashi states maps diagonal N = 2 Ishibashi states of the

Gepner model to N = 2 Ishibashi states of the torus with the same highest weight and

charge. In the vacuum sector, this is already sufficient to identify the Ishibashi states.

Consider for example the diagonal Ishibashi state at H = 1
2 , Q = 1, which appears on the

Gepner side only in the left-moving representation h1 = h2 = 1
4 , q1 = q2 = 1

2 in the twist

sector t = 2. Since this is the only Ishibashi state with these quantum numbers, we can

identify it with the state |12 , 1〉〉 on the torus.2 On the Gepner side, this Ishibashi state

couples to a permutation brane (L, M, M̂, S1, S2) with the factor

1√
2

sin
(π

4
(L + 1)

)

ei π
2
M̂ ,

while on the torus side the coupling is N (φ)eiπφ. Hence we deduce that the angle of the

permutation brane is

φ =
π

2
M̂ . (4.4)

On the Gepner side, we also find a tensor product Ishibashi state in the same represen-

tation, whose coefficient will analogously yield the angle φ in terms of the tensor product

brane labels. Remembering the additional phase (4.3), we find with the coefficients from

the formulae (3.10) – (3.14)

φ =
π

2
(M1 + M2 + 1) (4.5)

for a tensor product brane (L1, M1, S1, L2, M2, S2).

In the more general cases of vanishing diagonal charge (Q = 0), the identification of

the diagonal Gepner Ishibashi states at highest weight H > 0 with the torus Ishibashi

states is more complicated. However we can use that eigenstates of the two Z4 symmetries

on the Gepner side will be mapped to eigenstates of the corresponding symmetries on the

torus side.

As an example, consider the identification of the diagonal Ishibashi states of lowest

nonvanishing highest weight in the NS sector, which are the states H = 1
4 , Q = 0. In the

Gepner model, these states appear in the left-moving representations (1
8 , ±1

4) ⊗ (1
8 , ∓1

4),

2Strictly speaking this only fixes the identification up to a phase. As we shall see, it is consistent that

we choose this phase factor to be trivial.
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whose Ishibashi states are of permutation type in the twist sectors n = 0 and n = 2 and of

tensor product type in the other sectors. Let us choose the basis on the torus to be

|1, 0, π; η〉〉t,1, |1, 0, π; η〉〉t,3 (t = 0, . . . , 3) (4.6)

in the notation (2.16). The ansatz for the identification is then

|
(

1

8
, −1

4

)

⊗
(

1

8
,

1

4

)

〉〉t ↔ α(t)|1, 0, π; η〉〉t,1 ,

|
(

1

8
,

1

4

)

⊗
(

1

8
, −1

4

)

〉〉t ↔ β(t)|1, 0, π; η〉〉t,3

for 0 ≤ t ≤ 3, where the phases α(t) and β(t) are initially undetermined. For a permutation

brane (L, M, M̂, S1, S2) we then obtain

eiA = e−iA =
1√
2
ei π

4
M+i π

2
L−iπS2

(

α(0) + β(0)ei π
2
M

)

,

eiB = e−iB =
i√
2
ei π

4
M+i π

2
L−iπS2

(

α(0) − β(0)ei π
2
M

)

, (4.7)

α(2) = −β(0) ,

β(2) = −α(0) .

Here, A and B are position and Wilson line of the torus brane. The label L is even, since

these are the only permutation branes that couple to the considered Ishibashi states. A

solution to the equations (4.7), i.e. a consistent formula for position A and Wilson line B

in terms of the permutation brane labels, can be given for α(0) = (β(0))∗ = −(α(2))∗ =

−β(2) = ei π
4 (see table 2).3 We find similar consistency equations for A and B from the

tensor product branes at a single fixed point (3.12), (3.13).

Positions and Wilson lines of the other tensor product and permutation branes (at

L = 1 or L1 + L2 even, respectively) can be obtained from matching the states at H = 1
2 ,

Q = 0 in a similar way as in the case H = 1
4 , Q = 0 we have just mentioned. The formulae

for positions and Wilson lines were also checked in the R sector, and for higher values of H.

The procedure provides a consistent map for the positions and Wilson lines of the

images of tensor product and permutation branes on the torus, which — for a certain

phase chioce — is given in table 2. From this table, we see that the branes coupling to the

Ishibashi states at lowest momentum (highest weight H = 1
4) have L even (permutation

branes) or L1 + L2 odd (resolved tensor product branes coupling to flipped states). These

branes are the ‘short’ or ‘light’ branes, i.e. those that couple to the vacuum with the lowest

coefficient; their angles are integer multiples of π. For the permutation branes at L even,

shifting the M label by 2 leads to a relative phase shift between position and Wilson line.

In the case of the tensor product branes at L1+L2 odd, the relative phase between position

and Wilson line is changed by passing from the branes with L1 = 1 to those with L2 = 1

(and vice versa).

3Again, there exist other possible phase choices. These correspond to choosing the absolute position and

orientation of one reference brane.
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Permutation branes

φ = π
2 M̂

L = 0 mod 2
M = 0 mod 4 : A = π

2 L + π
4 M + πS1 , B = A

M = 2 mod 4 : A = π
2L + π

4 (M − 2) + πS1 , B = A + π

L = 1 A = π
2 (M − 1) , B = A + π

Tensor product branes

φ = π
2 (M1 + M2 + 1)

L1 = 1, L2 = 0 mod 2 A = π
2 L2 + π

2M1 + πS1 , B = A

L1 = 0 mod 2, L2 = 1 A = π
2L1 + π

2 M2 + π(S1 + 1) , B = A + π

L1, L2 = 0 mod 2 A = B = 0

L1 = L2 = 1 A = B = π

Table 2: Example for a consistent choice of positions A and Wilson lines B in terms of the coset

labels for the images of the B-type permutation and tensor product branes, with ǫ = e−i
π

2
(S1+S2).

π 2π

π

2π

M = 0 , M̂ = 0

M = 2 , M̂ = 0M
=

0
,M̂

=
2

M
=

2
,M̂

=
2

π 2π

π

2π

M
=

1,
M̂

=
1

M
=

1, M̂
=

3

Table 3: Permutation brane positions in the labels of table 2. The left diagram shows the short

branes (L = 0) at different values of M and M̂ , the right diagram contains examples of the long

branes (L = 1). The fermion structure has been set to η = +1, S1 = S2 = 0. The filling of the

circles at the end of the lines denotes the Wilson line of the brane; empty circles correspond to

Wilson line B = 0, half-filled circles to Wilson line B = π.

5. Relation to matrix factorisations

Our simple model corresponds to an orbifold of the Landau-Ginzburg superpotential

W = x4
1 + x4

2 + z2 , (5.1)

where the presence of the trivial factor z2 is related to the charge projection of our Gepner

model. Topological branes are given by a pair
(

Q =

(

0 J

E 0

)

, γ

)

(5.2)
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π 2π

π

2π

(M1,M2) = (3, 0)

(M1,M2) = (1, 2)

(M
1
,M

2
)

=
(1

,0
)

(M
1
,M

2
)

=
(3

,2
)

π 2π

π

2π

M
1
=

0,
M

2
=

0

M
1 =

2, M
2 =

2

Table 4: Tensor product brane positions in the labels of table 2. The left diagram shows the

resolved short tensor product branes with L1 = 1, L2 = 0, the right diagram contains long branes

with L1 = L2 = 0. The fermion structure has been set to η = +1, S1 = S2 = 0. The filling of

the circles at the end of the lines denotes the Wilson line of the brane; empty circles correspond to

Wilson line B = 0, quarter-filled circles to Wilson line B = π

2 , etc.

where Q has entries that are polynomials in x1, x2, and z such that it factorises the

superpotential, i.e.

Q2 = W1 . (5.3)

The orbifold matrix γ satisfies

γQ(ix1, ix2,−z)γ−1 = Q(x1, x2, z) and γ4 = 1 . (5.4)

The orbifold matrix is hence only defined up to a phase factor ei π
2
n for n = 0, 1, 2, 3.

The relative couplings of factorisations to the RR-primary ground states can be com-

puted from a general formula given in [35] (for a review, see e.g. [36]). In our case, these

states are in the following left-moving representations:

t (l1, m1, s1) ⊗ (l2, m2, s2) (h1, q1) ⊗ (h2, q2)

1 (0, 1, 1) ⊗ (0, 1, 1) ( 1
16 , 1

4 ) ⊗ ( 1
16 , 1

4 )

3 (0, 7, 3) ⊗ (0, 7, 3) ( 1
16 ,−1

4 ) ⊗ ( 1
16 ,−1

4)

(5.5)

As above, t denotes the twist sector. The R primary field with (h, q) = ( 1
16 , 0) appears only

in combination with the field (h, q) = ( 5
16 , 1

2), which is not primary. Since the RR primary

states all appear in twisted sectors, the formula for their brane couplings reduces to

C(Q, γ; t) = Str(γt) (t = 1, 3) , (5.6)

Str denoting the supertrace. In the following we are going to identify the Gepner branes

of section 3.1 with certain matrix factorisations by computing the couplings of different

factorisations and comparing the results to the couplings obtained from the brane formulae.

From now on we will set S1 = S2 = 0.
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Let us first consider the matrix factorisations corresponding to the permutation

branes (3.15), which have been worked out in general in [19]. The analogues of the rank 1

factorisations described in [19] are given by matrices of the form

J =









∏

η∈I

(x1 − ηx2) −z

z
∏

η∈IC

(x1 − ηx2)









,

E =









∏

η∈IC

(x1 − ηx2) z

−z
∏

η∈I

(x1 − ηx2)









, (5.7)

γ = diag(1,−i|I|, i|I|,−1) × ei π
2
n ,

where I is a subset of the set of fourth roots of −1, IC is its respective complement, and

|I| is the number of elements in I. These factorisations are identified with branes in the

Gepner model in the following way:

(i) Factorisations of type (5.7) with |I| = 1 or |I| = 3 correspond to the permutation

branes (3.15) with L 6= 1. There are 8 factorisations of this type, and each has 4

values for the phase of γ. A factorisation with |I| = 3 and phase ei π
2
n is identical

to a factorisation with IC and phase ei π
2
(n+1), so that we are left with 16 different

branes, as we have expected from the counting in 3.1.2. Without loss of generality,

we can restrict ourselves to permutation branes with L = 0. Taking e.g. ‖L = 0, M =

0, M̂ = 0, Si = 0〉〉 to be the factorisation with I = {ei π
4 } and n = 0, we find that

the L = 0 branes correspond to factorisations |I| = 1 with M̂ = 2n. The values of

M ∈ {0, 2, 4, 6} correspond to the choice of the element in I.

(ii) The factorisations of type (5.7), where I contains two consecutive roots of −1, corre-

spond to the permutation branes (3.15) with L = 1. There are two of these factorisa-

tions, each with four choices of γ, and they are again pairwise identified in a similar

way as before, so that there are 4 different branes. An identification consistent with

the one of the L = 0 permutation branes from above yields M̂ = 2n + 1.

(iii) The missing factorisations of type (5.7) correspond to the resolved tensor product

branes at L1 = L2 = 1, as it has already been argued on general grounds in [37].

The missing factorisations are those two for which I contains two non-consecutive

roots, and each factorisation has 4 possibilities for γ. As before there is again an

identification between pairs that reduces the number of different branes to 4, and the

phase ei π
2
n of γ is linked to the labels Mi by M1 + M2 = 2n in our conventions.

We have hence found corresponding Gepner branes for all factorisations (5.7), in agreement

with the proposition in [37].

Let us also give the factorisations corresponding to the other tensor product branes.

The branes (3.10) with L1 = L2 = 0 belong to the usual rank 4 tensor product factorisations
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x1x
3
1 +x2x

3
2 +zz. There are four factorisations of this type, and each comes again with four

choices of γ. There are however only four inequivalent factorisations, which are given by

J =











x1 −x3
2 −z 0

x2 x3
1 0 −z

z 0 x3
1 x3

2

0 z −x2 x1











, E =











x3
1 x3

2 z 0

−x2 x1 0 z

−z 0 x1 −x3
2

0 −z x2 x3
1











,

γ = diag(1, 1,−i, i, i,−i,−1,−1) × ei π
2
n . (5.8)

In our conventions we then have M1 + M2 = 2n.

The resolved tensor product branes (3.12) with L1 = 1, L2 6= 1 correspond to the rank

2 factorisations (x2
1 + iz)(x2

1 − iz) + x2x
3
2. There are four factorisations of this type, each

with four choices of γ. They are given by

J =

(

x2
1 − iz −x3

2

x2 x2
1 + iz

)

, E =

(

x2
1 + iz x3

2

−x2 x2
1 − iz

)

,

γ = diag(1, i,−1,−i) × ei π
2
n , (5.9)

and

J =

(

x2
1 + iz −x3

2

x2 x2
1 − iz

)

, E =

(

x2
1 − iz x3

2

−x2 x2
1 + iz

)

,

γ = diag(1, i,−1,−i) × ei π
2
n , (5.10)

with the two other factorisations arising from (5.9), (5.10) by interchanging x2 ↔ x3
2

and (x2
1 + iz) ↔ (x2

1 − iz). However, this interchange leads to equivalent factorisations.

We hence find 8 different factorisations, in agreement with the 8 different resolved tensor

product branes with L1 = 1, L2 6= 1. In our conventions, we have M1 + M2 = 2n + 1.

The other class (3.13) of resolved tensor product branes with L1 6= 1, L2 = 1 can be

identified with the factorisations x1x
3
1 + (x2

2 + iz)(x2
2 − iz), where the different branes are

given by (5.9) and (5.10) with x1 ↔ x2.

We have thus identified matrix factorisations for all the Gepner branes described in 3.1.

6. Conclusion

In this paper, we have worked out a dictionary between explicit sets of tensor product

and permutation branes (3.10), (3.12), (3.13), (3.14), (3.15) in the Gepner construction

involving two minimal models at k = 2 (3.3), and the branes (2.27) of the torus at the

self-dual point. To do this, we have identified the ‘natural’ Z4 symmetry (2.12) on the

torus with the quantum symmetry in the Gepner model, and the Z4 symmetry involving

a T-duality transformation in both torus directions (2.15) with the phase shift ei π
2
m1 . For

a convenient choice of some relative phases, this has yielded an identification of angles,

positions, and Wilson lines of the torus branes corresponding to the considered branes in

the Gepner model in terms of the labels of the latter (table 2).
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The N = 2 A-type boundary states on the torus can all be given by U(1) branes, satis-

fying gluing conditions that involve (twice) the angle of the brane on the torus analogously

to the electric flux of U(1) branes in electric fields (2.22). Both Z4 symmetries rotate the

angle by 90 degrees (or φ 7→ φ+π). With our definitions, the values of position and Wilson

line of a brane are kept fixed under the first symmetry, and exchanged under the second.

Hence the first symmetry can be seen as a mere rotation of the brane around the point

(π, π) in the diagrams, leaving the distance to the origin and the Wilson line fixed, while

the second symmetry in general involves a shift in position.

The Gepner branes can be identified with matrix factorisations of a corresponding

Landau-Ginzburg orbifold. Although the direct identification of Gepner brane labels with

e.g. the phases of the orbifold matrices γ is heavily depending on our conventions, we can

for the considered model make the more general remark that a shift by π
2 in the phase of γ

corresponds to a rotation of 90 degrees of the corresponding brane on the torus, or a shift

of φ by π, respectively.
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A. Conventions for the N = 2 minimal models

The N = 2 algebra is generated by the modes Ln of the energy-momentum tensor, the

modes Jn of the U(1) current, and the modes G±
r of the two supercharges, where n ∈ Z and

r ∈ Z for the R sector or r ∈ Z + 1
2 for the NS sector. They obey the (anti-)commutation

relations

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm,−n ,

[Lm, Jn] = −nJm+n ,

[Lm, G±
r ] =

(m

2
− r

)

G±
m+r ,

[Jm, Jn] =
c

3
mδm,−n ,

[Jm, G±
r ] = ±G±

m+r ,

{G+
r , G−

s } = 2Lr+s + (r − s)Jr+s +
c

3

(

r2 − 1

4

)

δr,−s ;

all the other (anti-)commutators vanish. The N = 2 minimal models at level k ∈ N have

central charge

c =
3k

k + 2
(A.1)
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and are described by means of the coset construction

su(2)k ⊗ u(1)4
u(1)2(k+2)

. (A.2)

Highest weight representations of the coset construction are labelled by

l ∈ {0, . . . , k} , m ∈ Z2(k+2) , s ∈ Z4 , (A.3)

with the selection rule that l + m + s must be even. The corresponding highest weight

state is denoted as

Φl,s
m ≡ |l, m, s〉 , (A.4)

with highest weight and charge

h =
l(l + 2) − m2

4(k + 2)
+

s2

8
mod 1 , q =

s

2
− m

k + 2
mod 2 . (A.5)

The set of labels (k − l, m + k + 2, s + 2) gives a representation identical to the one

with labels (l, m, s); we denote the equivalence class by [l, m, s]. A complete N = 2 NS

representation is given by the direct sum (l, m, 0)⊕ (l, m, 2), a complete R representation

is (l, m, 1)⊕ (l, m, 3), where one part of the direct sum contains the states at even and at

odd fermion number respectively. The chiral primaries are given by the labels (l, l, 0) or

(l, −l − 2, 2) in the NS sector and by (l, l + 1, 1) or (l, −l − 1, −1) in the R sector. The

modular S matrix of the coset theory is

SLMS,lms =
1

√

2(k + 2)
SLle

i π
k+2

Mme−i π
2
Ss , (A.6)

where

SLl =

√

2

k + 2
sin

(

π

k + 2
(L + 1)(l + 1)

)

(A.7)

is the modular S matrix of su(2)k. The spectral flow of unit 1
2 acts on the coset labels by

fusion with (0, 1, 1).

B. Table for the Gepner model and its relation to the torus

A list of the minimal model representations of the N = 2 superconformal algebra at k = 2 in

terms of the coset labels is given in table 5. If one follows the comparison of the characters

that lead (3.4) to higher orders, one is lead to the following general formula for diagonal

representations at c = 3 contained in the tensor product of two minimal models at k = 2:

(0, 0) ⊗ (0, 0) = (0, 0)
⊕

m∈Z

(

8|m| − 1

2
, sign

(

8m − 1

2

))

⊕

n∈N

(

n2, 0
)

⊕

p,q∈N

(

p2 + q2, 0
)

,

(

1

2
, 0

)

⊗ (0, 0) =
⊕

n odd

(

n2

2
, 0

)

⊕

p2+q2 odd

(

p2 + q2

2
, 0

)

,

(

1

8
,

1

4

)

⊗
(

1

8
, −1

4

)

=
⊕

n odd

(

n2

4
, 0

)

⊕

p2+q2 odd

(

p2 + q2

4
, 0

)

.
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NS – sector R – sector

l m s h q l m s h q

0 0 0 0 0 0 1 1 1

16

1

4

0 2 2 1
4

1
2 0 3 3 9

16
3
4

0 4 2 1
2 0 0 5 3 9

16
1
4

0 6 2 1

4
−1

2
0 7 3 1

16
−1

4

1 1 0 1

8
−1

4
1 0 1 5

16
1
2

1 3 2 1
8

1
4 1 2 1 1

16
0

Table 5: List of coset labels, highest weights and charges for the representations of the N = 2

algebra at level k = 2. For the NS sector, the coset label s indicates the bosonic subalgebra of even

fermion number, in the R sector the coset labels give the subalgebra of the highest weight state

which is annihilated by G+
0 . Bold face indicates chiral primaries.

Here, m runs over all integers, whereas n, p, and q only take values in the set of natural

numbers. By applying the spectral flow on both factors on the left hand side as well as

on the summands on the right-hand side, one obtains the formulae for the other tensor

products appearing in the Gepner model. This formula has not been proved, but it has

been checked numerically up to level 50.
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